ROMTEKNOLOGI

Kapittel 2 Annex

Transformasjon av baneparametre

Gunnar Stette
G.Stette@tele.ntnu.no

Transformation from (I) til (II)

$$
\begin{aligned}
& i=\arccos \left(\frac{Y \cdot \dot{Z}-Z \cdot \dot{Y}}{\sqrt{\left(X^{2}+Y^{2}+Z^{2}\right) \cdot\left(\dot{X}^{2}+\dot{Y}^{2}+\dot{Z}^{2}\right)}}\right) \\
& \Omega=\arctan \frac{Y \cdot \dot{Z}-Z \cdot \dot{Y}}{\dot{X} \cdot Z-Z \cdot X} \\
& x=X \cdot \cos \Omega-Y \cdot \sin \Omega \\
& \dot{x}=\dot{X} \cdot \cos \Omega+\dot{Y} \cdot \sin \Omega \\
& y=-X \cdot \sin \Omega \cdot \cos i+Y \cdot \cos \Omega \cdot \cos i+Z \cdot \sin i \\
& \dot{y}=-\dot{X} \cdot \sin \Omega \cdot \cos i+\dot{Y} \cdot \cos \Omega \cdot \cos i+\dot{Z} \cdot \sin i
\end{aligned}
$$

Transformation from (II) to (I)

$$
\begin{aligned}
& X=x \cdot \cos \Omega-y \cdot \sin \Omega \cdot \cos i \\
& Y=x \cdot \sin \Omega+y \cdot \cos \Omega \cdot \sin i \\
& Z=y \cdot \sin i \\
& \dot{X}=\dot{x} \cdot \cos \Omega-\dot{y} \cdot \sin \Omega \cdot \cos i \\
& \dot{Y}=\dot{x} \cdot \sin \Omega+\dot{y} \cdot \cos \Omega \cdot \sin i \\
& \dot{Z}=\dot{y} \cdot \sin i
\end{aligned}
$$

Transformation from (II) to (III)

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& v=\sqrt{\dot{x}^{2}+\dot{y}^{2}} \\
& a=\frac{r \cdot \mu}{2 \cdot \mu-r \cdot v^{2}} \\
& \varepsilon=\sqrt{1-\frac{(x \cdot \dot{y}-y \cdot \dot{x})^{2}}{\mu \cdot a}} \\
& \nu=\operatorname{arc} \cos \frac{a \cdot\left(1-\varepsilon^{2}\right)-r}{\varepsilon \cdot r} \\
& \omega=v-a \tan \left(\frac{y}{x}\right)
\end{aligned}
$$

Transformation from (III) to (II)

$$
\begin{gathered}
r=\frac{\left(1-\varepsilon^{2}\right) \cdot a}{1+\varepsilon \cdot \cos v} \\
v=\sqrt{\mu \cdot\left(\frac{2}{r}-\frac{1}{a}\right)} \\
\alpha=\operatorname{arc} \sin \left(\frac{\sqrt{\left(1-\varepsilon^{2}\right) \cdot \mu \cdot a}}{r \cdot v}\right. \\
x=r \cdot \cos (\omega+v) \quad y=r \cdot \sin (\omega+v) \\
\dot{x}=v \cdot \cos (\omega+v+\alpha) \quad \dot{y}=v \cdot \sin (\omega+v+\alpha)
\end{gathered}
$$

Time as a function of true anomaly

$$
t=t_{p}+\sqrt{\frac{a^{3}}{\mu}} \cdot\left\{2 \cdot \arctan \left(\sqrt{\frac{1-\varepsilon}{1+\varepsilon}} \cdot \tan \frac{v}{2}\right)-\varepsilon \cdot \sqrt{1-\varepsilon^{2}} \cdot \frac{\sin v}{1+\varepsilon \cos v}\right\}
$$

$$
t=t_{p}+\sqrt{\frac{a^{3}}{\mu}} \cdot\left\{\arccos \left(\frac{e+\cos v}{1+e \cos v}\right)-\varepsilon \cdot \sqrt{1-\varepsilon^{2}} \cdot \frac{\sin v}{1+\varepsilon \cos v}\right\}
$$

$$
\mathbf{t}_{\mathrm{p}}=\text { time at perigeum } \quad v=\text { true anomaly (function of time) }
$$

